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Organic thin-film transistors (TFTs) have attracted intense Scheme 1
research interest in recent year$t First, their potential for
fabricating very low-cost integrated circUit8 for large-area \s y /N S/ 7\
electronic devices (e.g., active matrix displays), where use of current . N s
silicon technology can be prohibitively costly, has been the primary l

motivation. Second, their compatibility with plastic substratéms FeCl, /PhCI

rendered them ideal for creating compact, lightweight, mechanically
flexible, and structurally inspiring electronic device designs (e.g., SO/ NS5 [\
electronic papers). To enable low-cost manufacturing, circuit s
fabrication using simple solution technigiesnder ambient or R 2 3
nonsterile conditions is highly desirable. However, currently known achieve both TFT functionality and oxidative stability in a poly-
solution-processable semiconducting polymers provide poor transis-thiophene systert:
tor properties (e.g., low mobility, low current on/off ratio, etc.) when | pQT, 2, the alkyl side-chains are strategically positioned along
the semiconductors are deposited in air. For example, TFTS the polythiophene backbone such that the repeating length of the
fabricated in air with regioregular head-to-tail poly(3-hexyl- polymer is about 15.5 A. Those side-chains oriented in the same
thiophene), P3HT, generally exhibited much lower performance gjrections in the extended polymer conformation are spaced
characteristicsthan those fabricated in an inert atmospheféis approximately 12 A apart as they are tilted at an angsé® against
was primarily due to the sensitivity of regioregular P3HT to the backbone. This 12 A spacing, together with a sufficiently long
atmospheric oxygen. On the other hand, the relatively air-stable g group &Cg), has enabled® to undergo self-assembly under
poly(9,9-dioctyl-fluorene-co-bithiophene) achieved a mobility of  appropriate conditions to achieve long-range intermolecular side-
only 0.01-0.02 cn# V-1 s~* after mechanical rubbing of substrates  chain interdigitations in the condensed phase, leading to formation
and very high-temperature annealfhghe difficulty in attaining of three-dimensional lamellar-stacking structural orders as
desirable transistor functionality in semiconducting polymers under schematically represented 1y Lamellar structures of this type
ambient conditions is primarily due to (i) fundamental structural had been observed in the monomeric and oligomeric fornesdf
deficiency in the ability to achieve proper structural orders in thin  The presence of unsubstituted thienylene moieties in PQT, which
films and energetics for efficient charge carrier transparid/or possess some rotational freedom, cuts down omthenjugation
(if) sensitivity to chemical doping by atmospheric oxygen, resulting to an extent that imparts sufficient oxidative stability to the system.
in increased free carrier density, which degrades performfafice.  Thus, the IP of PQT was measured to be 0.1 eV higher than that

We report here a class of solution-processable regioregular of regioregular P3HT.
polythiophenes, poly(3;3-dialkyl-quaterthiophene), (PQTs), that Compound? was prepared in good yields by FeGiEmediated
affords excellent TFT performance under ambient conditions. No oxidative coupling polymerizatidfof quarterthiophene monomer
precautionary measures need to be taken in excluding oxygen,1 (Scheme 1) and purified by extractions with appropriate solvents.
moisture, or light during device fabrication. This class of poly- The DSC thermogram of PQT-12,(R = n-Cy;H.s) showed liquid
thiophenes was designed on the basis of the following structural crystalline characteristics with two endotherms-dt20 and~140
considerations: (i) appropriately long alkyl side-chains for solution °C, corresponding to the crystalline-to-liquid crystalline and liquid
processability; (i) structural regularity to induce and facilitate crystalline-to-isotropic phase transitions, respectively. Similar liquid
molecular self-assembly; and (iii) proper control of extended crystalline behaviors involving analogous phase transitions had
m-conjugation to achieve a delicate balance between transistorearlier been observed in poly(3-alkylthiophen®)sXRD of a
functionality and oxidative doping stability. powdered sample of PQT-12 exhibited two diffractions ét=2

The oxidative doping of semiconducting conjugated polymers 7.4 and 21.5, arising from side-chaind(spacing, 12.0 A) and—x
depends on their ionization potentials (IPs), i.e., their highest stacking @ spacing, 4.1 A) orderings, respectively (Figure 1a).
occupied molecular orbital (HOMO) levels from vacuum, which When the powdered sample was annealedl0—-140°C, highly
are dependent on their effectiveconjugation lengths. For poly-  crystalline XRD patterns were observed (Figure 1b), revealing an
thiophenes, coplanarity of the thienylene moieties along the polymer interchaind spacing of 16.4 A and a—x stacking distance of 3.8
chain leads to extensive-conjugation and, thus, a lower IP, and  A. On the other hand, thin films of PQT-12-0.2 «um) spun on a
a greater propensity to be oxidatively doped. Deviations from wafer modified with octyltrichlorosilane (OTS) exhibited broad
coplanarity result in shorter effectiveconjugation lengths, higher ~ XRD peaks, arising from loosely packed lamellar structures with
IPs, and greater resistance against oxidative doping. We have foundan interchain distance 0$18.5 A and ar—x stacking distance of
that both torsional barriers and rotational freedom of thienylene ~3.8 A (Figure 1c). On annealing at 138, very distinct crystalline
moieties can be utilized in tuning-conjugation to simultaneously  diffraction peaks were observed af 2 5.1° (100), 10.3 (200),
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ratio after being stored under ambient conditions in the dark for
one month, in sharp contrast to the drastic degradation in perfor-
mance of the regioregular P3HT devices under identical conditions.
In addition, the mobilities for the PQT-12 device extracted from
both the linear (Figure 2b) and saturated regimes were about the
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. J/\_/j\ same, and no observable differences were noted with the top- and
2 ¢ RAPA S AR bottom-contact device configurations. More importantly, little or

S“.Iﬁ“”l‘k"llll‘ II;‘””lhullllllsnl 0° 25° . . .
20 tve) 20 (deg) no hysteresis and bias stress effects had been observed with these

Figure 1. XRDs of PQT-12: (a) pressed pellet of precipitated polymer devices at and above room temperature (F_igures_ 2b and 2¢c). All
from polymerization; (b) pressed pellet annealed-a#0 °C; (c) as-cast these data suggest that PQT-12 has exhibited ideal field-effect

0.2 um thin film; (d) 0.2 um thin film annealed at 135C; and (e) transistor behaviors.
transmission electron diffraction pattern of PQT-12 film on carbon grid. In conclusion, we have demonstrated that through structural
70 design for proper self-assembly ability and controlledonjugation,
1 a both oxidative doping stability and excellent TFT performance
403 characteristics can be built into a polythiophene system. To the
50 - best of our knowledge, PQT is the only conjugated polymer system
=0 that has exhibited the best all-around polymer TFT properties under
% ambient fabrication conditions.
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Figure 2. |-V characteristics of exemplary PQT-12 TFT device with 90
um channel length and 5000m channel width: (a) output curves at
different gate voltages; (b) two transfer curves in saturated regime scanned
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